
Automated Patching

Aravind Machiry

Holistic Software Security

Fixing code automatically!

What is it?
Patching a defect (bug or vulnerability) automatically, also known as Automated Program Repair:

● Where and how to fix?

● How to specify the defect?

What is it?
Patching a defect (bug or vulnerability) automatically:

● Where and how to fix? => On source code, by making source level changes (i.e., editing code
statements).

● How to specify the defect? => Failing Test cases.

What is it?
Patching a defect (bug or vulnerability) automatically:

● Where and how to fix? => On source code, by making source level changes (i.e., editing code
statements).

○ Alternatives:
■ On binaries by doing binary rewriting.

■ Runtime by avoiding error behavior (error recovery).

● How to specify the defect? => Failing Test cases.
○ Alternatives:

■ High level specification: All memory errors.

What is it?
Patching a defect (bug or vulnerability) automatically:

● Where and how to fix? => On source code, by making source level changes (i.e., editing code
statements).

○ Alternatives:
■ On binaries by doing binary rewriting.

■ Runtime by avoiding error behavior (error recovery).

● How to specify the defect? => Failing Test cases.
○ Alternatives:

■ High level specification: All memory errors.

Not in this course.

Clarifications
Bug => Root cause and Symptom.

● Root cause => Uninitialized variable, out of bounds access, etc.
○ Fixing Root cause => Program Repair or Automated Patching.

● Symptom => SIGSEGV, Failing test case, etc.
○ Fixing Symptom => Error recovery.

Why is it needed: Automated and continuous software maintenance.

Fuzzing

Automated
Patching

Failing test cases
Software with no

known bugs

“What one would like ideally [...] is the automatic detection and correction of bugs” R. J. Abbott, 1990

Zero maintenance cost

Very active research area
Leaders

https://program-repair.org/index.html

Approaches: Overview
● Genetic Programming: GenProg and family.

● Program Analysis: Senx, Talos, SAVER, SPR, etc.

● Machine Learning: Prophet, DeepFix, etc.

Approaches: Overview
● Genetic Programming: GenProg and family.

● Program Analysis: Senx, Talos, SAVER, SPR, etc.

● Machine Learning: Prophet, DeepFix, etc.

GenProg: Fixing by genetic programming
● Intuition: “The fix for a bug is most likely already present somewhere in the program.”

● The developer might have written mostly bug-free code except for a few cases where the bug

might have crept in.

GenProg: Generate paths

Generate
test case

paths

For each test case:

● Get the path, i.e., sequence of statements executed.

● Remove duplicate statements, i.e., statements in loops.

GenProg: Test case paths

GenProg: Weighted paths

Generate
test case

paths Compute
weighted

paths

For each path:

● Assign a weight for each statement:
○ Statement executed only in failure test case, Weight = 1.

○ Statement executed in successful test case, Weight = 0.01.

GenProg: Weighted paths

GenProg: Mutations

Generate
test case

paths Compute
weighted

paths

Mutations

For each path:

● Pick a statement: Higher weight => Higher probability of picking.

● Perform mutation operation.

GenProg: Mutations

Mutations:

Swap with other statement.

Insert a statement.

Delete the current statement

Pick a statement in the
program

GenProg: Fitness function

Generate
test case

paths Compute
weighted

paths

Mutations Fitness function

Higher score => Passes most of the positive test cases and fails least of the test cases.

GenProg: Fitness function

GenProg: Post processing

Generate
test case

paths Compute
weighted

paths

Mutations Fitness function

Programs with no
failed test cases

● Minimize the patched program:
○ Delta debugging : Iteratively remove statements unless there is a failed test case.

GenProg: Post processing

GenProg: Results

● Improved search: Randomized Search

GenProg: Improvements

Defect Specific Techniques
● Workarounds => Talos: Instead of fixing, avoid the bug

● Buffer overflow, Integer overflow, Bad casts => Senx

● Temporal heap errors => SAVER

Security Workarounds

Security Workarounds

Regular flow:
Patching vulnerability

Security Workarounds

Vulnerability Mitigation:
Security Workarounds

Basic Idea: Selectively disable execution of certain (i.e., vulnerable) functions.

Instrument appropriate functions and disable execution of those functions.

Novelty: Correctly disabling functions without affecting “major” functionality of the application.

Talos: Security Workarounds

Find error handling behavior of each function:

● return error_code/NULL.
● log error message.
● Other heuristics.

Instrument function to have error handling behavior.

Talos: Disabling functions

Talos: Disabling functions

If the vulnerability is known then just disable the function.

Talos: Disabling functions

Talos: Results

Affected major functionality
of the application

Given a vulnerability triggering input => Create a patch that avoids the vulnerability.

Vulnerability types:

● Buffer overflow.

● Bad-cast.

● Integer overflow.

Senx: Vulnerability Specific Patches

Senx: Overview

Symbolic
Execution

(KLEE)

Predicate
Generation

Patch
Placement

Patch
Synthesis

Violated Property.
Ex: Integer overflow

Check for violated
property.

Ex: (i<MAX_INT)

Program point at
which the patch

should be placed

Given program and vulnerability triggering input:

Symbolically trace the program with pre-constraining the input.

At each program point, check for vulnerability condition:

● Out of memory access.

● Integer overflow

● Bad casts.

Vulnerability point: Program point at which the vulnerability condition (security property violation) occurs

Senx: Symbolic Execution

Senx: Safety property

https://www.youtube.com/watch?v=rHf_teG6iQc

Generate a condition that prevents the vulnerable condition.

Senx: Predicate Generation

Senx: Predicate Generation

https://www.youtube.com/watch?v=rHf_teG6iQc

Senx: Predicate Generation

https://www.youtube.com/watch?v=rHf_teG6iQc

Senx: Predicate Generation

https://www.youtube.com/watch?v=rHf_teG6iQc

Senx: Predicate Generation

https://www.youtube.com/watch?v=rHf_teG6iQc

Place the patch at the highest point in the call-graph where all the variables needed for the predicate
are available.

Senx: Patch Placement

Senx: Patch Placement

https://www.youtube.com/watch?v=rHf_teG6iQc

Fixes temporal memory errors using static analysis warning.

Run Infer (static analysis tool) to find temporal memory errors, i.e., use-after-free, memory leak, double

free.

SAVER: Memory Error Repair

Construct Object flow graph from Infer warning: “Object allocated at 1 is unreachable at 7”

SAVER: Object flow graph

We need to fix paths containing invalid event sequences by inserting appropriate memory

allocation/deallocation operations.

SAVER: Buggy Paths

SAVER: Fixing strategies

SAVER: Fixing strategies

SAVER: Fixing strategies

SAVER: Fixing strategies

SAVER: Results

Automated Patching: Final Thoughts
● Defect specific techniques and ML techniques are on rise.

● Should explore interactive patching strategies => Active learning for patching strategies!!?

● Can we ask developer for some input that would make the patching easier and more precise!?

● Keep an eye on: https://program-repair.org/index.html

https://program-repair.org/index.html

