Automated Patching

Holistic Software Security

Aravind Machiry

Fixing code automatically!

else if (request_method == "POST") ({ i elii tféﬁgﬁﬁei?{,‘fth“ == ") |
buff=calloc(length, sizeof (char)); + return null;
rc=recv (socket,buff, length) E buff=calloc(length, sizeof (char));
buff[length]="\0"; e é;:ﬁl]ci?,\lgt;ff , length)

} }

What is it?

Patching a defect (bug or vulnerability) automatically, also known as Automated Program Repair:

e Where and how to fix?
e How to specify the defect?

What is it?

Patching a defect (bug or vulnerability) automatically:

e Where and how to fix? => On source code, by making source level changes (i.e., editing code
statements).
e How tospecify the defect? => Failing Test cases.

What is it?

Patching a defect (bug or vulnerability) automatically:

e Where and how to fix? => On source code, by making source level changes (i.e., editing code

statements).
o Alternatives:
m Onbinaries by doing binary rewriting.
] Runtime by avoiding error behavior (error recovery).
e How tospecify the defect? => Failing Test cases.
o Alternatives:
m Highlevel specification: All memory errors.

What is it?

Patching a defect (bug or vulnerability) automatically:

e Where and how to fix? => On source code, by making source level changes (i.e., editing code

statements).
o Alternatives:
Runtimel ;.l.g ’Il‘g{ \ . .
e How to specify the defect? => Failing Test cases. Not in this course.
o Alternatives:

Hish tevelspecifieationAl .

Clarifications

Bug => Root cause and Symptom.

e Root cause => Uninitialized variable, out of bounds access, etc.
o Fixing Root cause => Program Repair or Automated Patching.

e Symptom => SIGSEGYV, Failing test case, etc.

o Fixing Symptom => Error recovery.

Why is it needed: Automated and continuous software maintenance.

google/clusterfuzz

~
<

Fuzzing

Automated
Patching

Software with no
known bugs

“What one would like ideally [...] is the automatic detection and correction of bugs” R. J. Abbott, 1990

Very active research area

60

50

40

30

20

10

I # of publications

0
a O 40 2 B b 45 A6 Wl B a0 0O oA
oS 00 o o o (0 0 0 (0?90 0 0 (08 (0 (I oo

Leaders

I # of publications

Martin Monperrus

Claire Le Goues

Westley Weimer

Abhik Roychoudhury
Matias Martinez
Stephanie Forrest
Dongsun Kim
Tegawendé F. Bissyandé
Kui Liu

Anil Koyuncu

25

https://program-repair.org/index.html

Approaches: Overview

e Genetic Programming: GenProg and family.
e Program Analysis: Senx, Talos, SAVER, SPR, etc.

e Machine Learning: Prophet, DeepFix, etc.

Approaches: Overview

e Genetic Programming: GenProg and family.
e Program Analysis: Senx, Talos, SAVER, SPR, etc.

e Machine Learning: Prophet, DeepFix, etc.

GenProg: Fixing by genetic programming

e Intuition: “The fix for a bug is most likely already present somewhere in the program.”

e Thedeveloper might have written mostly bug-free code except for a few cases where the bug
might have crept in.

GenProg: Generate paths

Generate
test case
paths

GenProg: Test case paths

For each test case:

e Getthepath,i.e., sequence of statements executed.
e Remove duplicate statements, i.e., statements in loops.

GenProg: Weighted paths

(J&)
Generate
test case
D paths \ Compute
ﬁ weighted

paths

GenProg: Weighted paths

For each path:

e Assign aweight for each statement:
o Statement executed only in failure test case, Weight = 1.
o Statement executed in successful test case, Weight = 0.01.

GenProg: Mutations

Mutations

Generate
test case
paths

Compute
weighted
paths

GenProg: Mutations

For each path:

e Pick astatement: Higher weight => Higher probability of picking.

; ; 1: for all (stmt;, prob;) € Pathp do
° . ' i
Perform mutation operation 2: if rand(0,1) < prob; Arand(0,1) < Wy, then
3: let op = choose({insert, swap, delete})

_///_4:——4 if op = swap then |

5; let stmit; = choose(F’)
Mutations: N Path p[i] < stmit;, probv,)
Swap with other statement. ¢

else if op = insert then | PiCkaS;igeggi‘“nthe
let stmi; = choose(F)
Insert a statement. Path plil — ({stmt;: Stmtj}, pTObi>
else if op = delete then |

Delete the current statement

11: Pathp[z] — ({}, prob;)
12: end if

13: end if

14: end for

15: return (P, Pathp)

GenProg: Fithess function

e

Generate
test case
paths

Mutations ’ (X) Fitness function

R_

.

N\

Compute
weighted
paths

GenProg: Fithess function

Higher score => Passes most of the positive test cases and fails least of the test cases.

fitness(P) = Wposr X [{t € PosT | P passes t}|
+ Whegr X [{t € NegT | P passes t}|.

GenProg: Post processing

Mutations (X) Fitness function

Generate M
test case Programs with no
wi
paths \ Compute $ failed test cases
weighted

paths

GenProg: Post processing

e Minimize the patched program:
o Deltadebugging: Iteratively remove statements unless there is a failed test case.

GenProg: Results

else if(request_method == "POST") { % elii l(f::zﬁeii“ngtmd == R |
buff=calloc(length, sizeof (char)); + return null;
rc=recv (socket,buff, 1ength) E buff=calloc(length, sizeof (char));
buff[length]="\0"; ;ﬁ;;ﬁ: é;:ﬁl]ci?,\lggff + length)

} }

GenProg: Improvements

e Improved search: Randomized Search

Defect Specific Techniques

e Workarounds => Talos: Instead of fixing, avoid the bug
e Buffer overflow, Integer overflow, Bad casts => Senx

e Temporal heap errors => SAVER

Security Workarounds

Vulnerability Triage

| Find the location of the vulnerability I

P e |

Find the cause of the
vulnerability

Construct a patch

Use Talos to identify the

Use Talos to generate an

SWRR for the location of SWRR for the location of
vulnerability vulnerability
- -
1
¥

Run regression test to
ensure no functionality is
broken

Activate the identified SWRR
in installed applications

v
Release the SWRR

v

v
Release the patch

Apply the patch to
installed applications

o

Apply the released SWRR to
installed applications

O A vulnerability is discovered.

. The vulnerability is fixed.

—> Full patch

]
1
i
i @ The vulnerability is mitigated. ----> In-place SWRR
i
1
H

> Patch-based SWRR
1

Security Workarounds

Regular flow:
Patching vulnerability

Vulnerability Triage

| Find the location of the vulnerability |

T
1 e,
1

= & T e o
Find the cause of the Use Talos to identify the Use Talos to generate an
vulnerability SWRR for the location of SWRR for the location of
vulnerability vulnerability
- -
:
M.

Run regression test to
ensure no functionality is
broken

Activate the identified SWRR
in installed applications

v
Release the SWRR

v

v
Release the patch

Apply the patch to

installed applications

J

[

Apply the released SWRR to
installed applications

O A vulnerability is discovered.

@ The vulnerability is fixed.

—> Full patch

> Patch-based SWRR

]
1
i
i @ The vulnerability is mitigated. ----> In-place SWRR
i
1
H

Security Workarounds

Y —

Find the cause of the
vulnerability

Construct a patch

Use Talos to identify the

Use Talos to generate an

SWRR for the location of SWRR for the location of
vulnerability vulnerability
- -
1
M

Run regression test to
ensure no functionality is
broken

Activate the identified SWRR
in installed applications

v
Release the SWRR

v

v
Release the patch

Apply the patch to
installed applications

o

Apply the released SWRR to
installed applications

O A vulnerability is discovered.

. The vulnerability is fixed.

—> Full patch

> Patch-based SWRR

]
1
i
i @ The vulnerability is mitigated. ----> In-place SWRR
i
1
H

Vulnerability Mitigation:
Security Workarounds

Talos: Security Workarounds

Basic Idea: Selectively disable execution of certain (i.e., vulnerable) functions.

Instrument appropriate functions and disable execution of those functions.

Novelty: Correctly disabling functions without affecting “major” functionality of the application.

Talos: Disabling functions

Find error handling behavior of each function:

e return error_code/NULL.
e Tlog error message.
e Other heuristics.

Instrument function to have error handling behavior.

Talos: Disabling functions

int example_function(...) {
/* SWRR inserted at top of function x/
if (SWRR_enabled (<SWRR_option>))
return <error_code >;

/* original function body */

Talos: Disabling functions

int example_function(...) {
/* SWRR inserted at top of function */
return <error_code >;

/* original function body =x/

If the vulnerability is known then just disable the function.

Talos: Results

App. CVE ID Heuristics | Security?| Unobtrusive?

lighttpd | CVE-2011-4362 | NULL Yes Yes
Return

lighttpd | CVE-2012-5533 | Indirect Yes No

lighttpd | CVE-2014-2323 | Error- Yes No
Propagation

apache CVE-2014-0226 | Error- Yes Yes
Logging

squid CVE-2009-0478 | Indirect Yes No

squid CVE-2014-3609 | Error- Yes €S
Logging

sqlite CVE-2015-3414 | Error- Yes Yes
Propagation

sqlite OSVDB-119730 | Error- Yes Yes
Logging

proftpd | OSVDB-69562 Error- Yes Yes
Propagation

proftpd | CVE-2010-3867 | Error- Yes Yes
Logging

proftpd | CVE-2015-3306 | Error- Yes Yes
Logging

Affected major functionality
of the application

Senx: Vulnerability Specific Patches

Given a vulnerability triggering input => Create a patch that avoids the vulnerability.

Vulnerability types:

e Buffer overflow.
e Bad-cast.
e Integer overflow.

Senx: Overview

Program point at
which the patch

Check for violated
property.

Violated Property.
Ex: Integer overflow

- Ex: (i<MAX_INT) should be placed
ES ymb?hc Predicate Patch Patch
Z(I?EEIIE(;n Generation Placement Synthesis

Senx: Symbolic Execution

Given program and vulnerability triggering input:
Symbolically trace the program with pre-constraining the input.
At each program point, check for vulnerability condition:

e Out of memory access.
e Integer overflow
e Bad-casts.

Vulnerability point: Program point at which the vulnerability condition (security property violation) occurs

Senx: Safety property

Safety Property for Buffer Overflow

buf_start <= access_start access_start + access_range<= buf_start + buf_size
! |

| I
: :4-— access_range—>: 1
1

https://www.youtube.com/watch?v=rHf_teGéiQc

Senx: Predicate Generation

Generate a condition that prevents the vulnerable condition.

Senx: Predicate Generation

Safety Property for Buffer Overflow

buf_start <= access_start access_start + access_range<= buf_start + buf_size

| I I 1
: gam— access_range=——! |
1

buf = malloc(s);
p = buf;

memcpy(p, q, n)

Target Program 0‘ i

https://www.youtube.com/watch?v=rHf_teGéiQc

Senx: Predicate Generation

Safety Property for Buffer Overflow

tart <= access_start access_start + access_range<= buf_start + buf_size
1

buf_s
I
1

. : :
: :4— access_range—b:
—

buf = ma|loc(s);
p = buf;

memcpy(p, g, n)

Target Program
https://www.youtube.com/watch?v=rHf_teGéiQc

Senx: Predicate Generation

Safety Property for Buffer Overflow

buf_start <= access_start access_start + access_range<= buf_start + buf_size

: ! |
: : :‘— access_range—b: 1
. » 1

buf = mallac(s);
p = buf;
memcpy(p, q, n)

‘Target Program Q‘1

https://www.youtube.com/watch?v=rHf_teGéiQc

Senx: Predicate Generation

Safety Property for Buffer Overflow

buf_start <= access_start access_start + access_range<= buf_start + buf_size
. .

I I
- — access_range=——! I
1

| |
}

buf = malloc(s);
p = buf;

memcpy(p, g, n)
Target Program Patch Predicate QN

https://www.youtube.com/watch?v=rHf_teGéiQc

Senx: Patch Placement

Place the patch at the highest point in the call-graph where all the variables needed for the predicate
are available.

Senx: Patch Placement

// allocate buffer

char *g(int p, int q) {
return malloc(p * q);

]

int f(char *d, intr, intc, i
char *out = g(r, c);
h(d, out, s);

int f (char *d, intr, intc, int s) {

char *out = g(r, ¢);
h(d, out, s);

// access buffer

void h{char *in, char *out, int len) 3

memcacpy

{out. in, lend
—

—

https://www.youtube.com/watch?v=rHf_teG6iQc

SAVER: Memory Error Repair

Fixes temporal memory errors using static analysis warning.

Run Infer (static analysis tool) to find temporal memory errors, i.e., use-after-free, memory leak, double
free.

SAVER: Object flow graph

Construct Object flow graph from Infer warning: “Object allocated at 1 is unreachable at 7"

alloc

1 p =malloc(1); //o; . alloc
z 2 (€} [3.C o | *
. 5,C; 04 | 5, -C, 02 |
3 q=p; use
v luse ie
1+ else] 6, C, o1 | | 6, =C, 01] 6, C, 02 |
s @ = Wallec(1);: /o y free I y free
| 7,C0s | |[72C01]| |7~C;00)
6 *p =1, h
unreach y Unreacn_Ainreach

~

free(q); exit

SAVER: Buggy Paths

We need to fix paths containing invalid event sequences by inserting appropriate memory
allocation/deallocation operations.

alloc
alloc
‘
3, C, o1 I €
5:—C; 01 | 5, =C, 02 |
use
alloc - € - use - € - unreach Y luse ‘e
] 6, C, 01 I | 6, =C, 01 | 6, =C, 02 |
¢ free l € l free
| 7,C0s | |[72C01]| |7~C;00)
unreach y unreach unreach

exit

SAVER: Fixing strategies

use € free unreach

unreach
€ free E >>::((;

(a) Inserting free

SAVER: Fixing strategies

use € free unreach € free e
unreach o

= free unreac
(b) Relocating free

(a) Inserting free

SAVER: Fixing strategies

use € free unreach

unreach
€ free

(a) Inserting free

€ use free use €

(c) Relocating use (dereference)

€ free free €
unreach
(b) Relocating free

SAVER: Fixing strategies

use € free unreach € free free €
unreach .

€ free unreac
. (b) Relocating free

(a) Inserting free
free free €
€ use free use €

(d) Deleting free

(c) Relocating use (dereference)

SAVER: Results

1 int append_data (Node *node, int *ndata) {

2 if (!(Node *n = malloc(sizeof(Node)))

3 return -1; // failed to be appended
4 n->data = ndata;

5 n->next = node->next; node->next = n;

6 return @; // successfully appended
7}

9 Node x1x . // a linked list

1o Node *ly = ... // a linked list

11 for (Node *node = 1x; node != NULL; node = node->next) {
12 int xdptr = malloc(sizeof(int));

13 if (!dptr) return;

14 *dptr = *(node->data);

15 (=) append_data(ly, dptr); // potential memory-leak

16 (+) if ((append_data(ly, dptr)) == -1) free(dptr);

7 F

Automated Patching: Final Thoughts

Defect specific techniques and ML techniques are onrise.

Should explore interactive patching strategies => Active learning for patching strategies!!?
Can we ask developer for some input that would make the patching easier and more precise!?
Keep an eye on: https://program-repair.org/index.html

https://program-repair.org/index.html

